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The classic Wells-Riley model is widely used for estimation of the transmission risk of airborne pathogens in indoor
spaces. However, the predictive capability of this zero-dimensional model is limited as it does not resolve the highly
heterogeneous spatiotemporal distribution of airborne pathogens, and the infection risk is poorly quantified for
many pathogens. In this study we address these shortcomings by developing a novel spatiotemporally resolved
Wells-Riley model for prediction of the transmission risk of different COVID-19 variants in indoor environments.
Thismodelling framework properly accounts for airborne infection risk by incorporating the latest clinical data regard-
ing viral shedding by COVID-19 patients and SARS-CoV-2 infecting human cells. The spatiotemporal distribution of
airborne pathogens is determined via computational fluid dynamics (CFD) simulations of airflow and aerosol trans-
port, leading to an integrated model of infection risk associated with the exposure to SARS-CoV-2, which can produce
quantitative 3D infection risk map for a specific SARS-CoV-2 variant in a given indoor space. Application of this model
to airborne COVID-19 transmission within a hospital ward demonstrates the impact of different virus variants and re-
spiratory PPE upon transmission risk. With the emergence of highly contagious SARS-CoV-2 variants such as the Delta
andOmicron strains, respiratory PPE alonemay not provide effective protection. Thesefindings suggest a combination
of optimal ventilation and respiratory PPE must be developed to effectively control the transmission of COVID-19 in
healthcare settings and indoor spaces in general. This generalised risk estimation framework has the flexibility to in-
corporate further clinical data as such becomes available, and can be readily applied to consider a wide range of factors
that impact transmission risk, including location and movement of infectious persons, virus variant and stage of infec-
tion, level of PPE and vaccination of infectious and susceptible individuals, impacts of coughing, sneezing, talking and
breathing, and natural and mechanised ventilation and filtration.
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Fig. 1. Size distribution of human respiratory droplets (data from (Chao et al., 2009)
and (Li et al., 2018)).
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1. Introduction

Since the outbreak of the 2019 coronavirus disease (COVID-19) pan-
demic, indoor spaces have been the major venue for the disease to
spread from person to person (Kenarkoohi et al., 2020; Noorimotlagh
et al., 2021; Sodiq et al., 2021). COVID-19 is a respiratory disease
caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Spread of COVID-19 is affected by many factors includ-
ing physical and socio-demographic factors (Gosak et al., 2021;
Markovič et al., 2021). As the physical factors are concerned, although
transmission of SARS-CoV-2 can occur via multiple routes, airborne
transmission has been identified as the dominant route (Chirico et al.,
2020; Greenhalgh et al., 2021; Zhang et al., 2020), hence quantification
of airborne transmission risk is vital for risk management and mitiga-
tion in indoor environments.

Airborne transmission of SARS-CoV-2 involves three consecutive
steps: (1) viral shedding via the emission of virus-laden respiratory
droplets when an infected person is sneezing, coughing, speaking,
and breathing; (2) transport and dispersion of the droplets in the air,
during which the droplets dehydrate and become desiccated aerosol
particles; and (3) inhalation of a sufficient dose of infectious particles
by a susceptible person which initiates a new infection. The character-
istics of each step can strongly affect the probability and outcome of in-
fection. For example, the level of viral shedding is 20–30 fold higher
with symptomatic COVID-19 patients than those without symptoms,
and a “super spreader” can exhale 100 times more droplets than an av-
erage patient (Sehrawat and Rouse, 2021), significantly increasing the
risk of infection. Furthermore, the expelled viral load can vary by over
1000-fold between different variants of SARS-CoV-2 (Li et al., 2021a),
and significantly change over the infection period (Sender et al.,
2021). The infectious dose (i.e., dose of virus needed to initiate an
infection) also varies strongly between different SARS-CoV-2 variants
(Liotti et al., 2021; Pollock et al., 2021; Sender et al., 2021), leading
to vastly altered transmission dynamics. Conversely, wearing of facial
masks or respirators by infected and/or susceptible people can greatly
reduce the dose of virus emission and inhalation. Similarly, alteration
of indoor ventilation airflows that transport virus-laden aerosols can
have a profound impact on the transmission pattern. Ambient
conditions such as air temperature and humidity also impact aerosol
transport and evolution, specifically via droplet evaporation and
vapor transport (Villermaux et al., 2017). All of the above factors
need to be considered and quantified across the three transmission
steps to effectively assess the risks associated with exposure to airborne
SARS-CoV-2.

Due to the multidisciplinary nature of aerosol transport, there cur-
rently is some inconsistency regarding aerosol-related terminology
across different disciplines (Tang et al., 2021). To avoid any ambiguity,
this study uses the following definitions: (i) Droplets are defined as hy-
drated respiratory droplets that contain water and may be airborne or
free falling. (ii) Droplet nuclei or particles are defined as dehydrated re-
spiratory droplets that are airborne and water-free solid particles. (iii)
Aerosols are defined as hydrated droplets or dehydrated droplet nuclei
that are airborne.

Droplets emitted from human respiratory activities are distributed
over a wide size range, typically from 100 nm to 1000 μm (Wölfel
et al., 2020), as shown in Fig. 1 (hollow symbols and dashed curves).
Given that a SARS-CoV-2 virus particle is ~100 nm in diameter (Bar-
On et al., 2020), even submicron droplets can carry a few virions (a vi-
rion is a complete virus particle that consists of an RNA core and a
protein coat and is the extracellular infectious form of SARS-CoV-2
(Yu et al., 2021)) and thus spread COVID-19. Although large droplets
(>100 μm) contain more virions and so have a higher probability to
trigger an infection if inhaled by a susceptible person, they can quickly
deposit on to the ground or other surfaces (Yan et al., 2019b), and so
do not play a major role in airborne transmission. Conversely, al-
though small particles (<5 μm) contain fewer virions, these can remain
2

airborne for prolonged periods and thus cause “long-distance trans-
mission” (Kwon et al., 2020). Sehrawat and Rouse (2021) argued
that the most dangerous particle size is around 0.4 μm since these par-
ticles can access the lower lungs and alveoli, leading to increased in-
fection risk and potentially damaging and lethal lesions. Sitting in
between these “small” and “large” size regimes are medium-sized par-
ticles (5–100 μm) whose movement is jointly controlled by gravita-
tional and inertial forces, and forces imposed by the background
airflows (e.g., drag and lift forces, turbulent dispersion, etc.) (Yan
et al., 2019b).

As expelled sputum droplets contain 95–99% water, they can dehy-
drate in the air and ultimately become desiccated droplet nuclei (or par-
ticles) which are 20–34% of the original hydrated size (Stadnytskyi
et al., 2020), as illustrated by the solid symbols and curves in Fig. 1
(data from (Chao et al., 2009) and (Li et al., 2018)). Droplet evaporation
in aerosol plumes is a highly complex process that is strongly affected by
the ambient conditions, especially the local humidity and temperature
surrounding the droplets and mixing of the vapor plume generated by
the evaporating droplets (Villermaux et al., 2017). Thus the rate of
evaporation of droplets can vary over several orders of magnitude in dif-
ferent indoor environments and depends strongly upon the fine-scale
turbulent structure of the exhalation event (Chong et al., 2021;
Villermaux et al., 2017). These processes mean that the evaporation
and transport of droplets is highly variable, and particles which may
otherwise be free-falling in one indoor space can become airborne for
much longer periods in another. The challenge of airborne disease trans-
mission modelling is to develop a framework that can account for these
complex dynamics but is flexible enough to be readily applied to a wide
range of practical indoor scenarios.

The Wells-Riley model (Riley et al., 1978) is widely used to estimate
the transmission risk of airborne diseases, and has recently been exten-
sively used (Li et al., 2021b; Liu et al., 2021; Zhang and Lin, 2021) for
the evaluation of COVID-19 transmission. This model is based on the
concept of a “quantum of infection” (Wells, 1955) under the assumption
that the air in a given space is well-mixed and contains certain “quanta”
of infectious pathogens (e.g., bacterium or virus). The probability of a
susceptible person being infected accumulatively increases as they in-
hale more quanta over a period of exposure time. Although the Wells-
Riley model is flexible and simple to use, this model is compromised
as the quanta of infectious pathogens is often ill-defined for many vi-
ruses, and the assumption of well-mixed air conditions is often far
from representative as sources of aerosolised pathogens are localised
to infectious persons. Hence the classic Wells-Riley model does not
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resolve the spatiotemporal inhomogeneity of the airborne pathogen dis-
tribution and thus infection risk, and the loosely defined infectious
quanta cannot be clearly quantified from clinical data. Sze To and
Chao (2010) suggested that in order to obtain effective risk assessments
using the Wells-Riley model, the characteristics of a specific pathogen
and the process of pathogen dispersion in a given indoor environment
must be carefully addressed.

This study aims to address these shortcomings by developing a spa-
tiotemporally resolved model of airborne COVID-19 transmission risk
that addresses the above requirements. Clinical data of viral shedding
by COVID-19 patients, and biomedical data regarding SARS-CoV-2 in-
fecting human cells are formulated and incorporated into the basic
Wells-Riley framework in Section 2, forming a novel, fit-for-purpose
quantitative prediction model for airborne COVID-19 transmission
risk. Computational fluid dynamics (CFD) simulations are used to pre-
dict the transport of droplet nuclei, providing accurate spatiotemporal
distribution of virus-laden aerosol particles. These aerosol distributions
serve as an input into the extended Wells-Riley model, forming an inte-
grated model capable of predicting the spatially resolved infection risk
associated with the exposure to SARS-CoV-2. In Section 3 this risk
model is demonstrated via application to airborne COVID-19 transmis-
sion risk in a typical hospital ward. Spatially resolved infection risk
maps are generated under a range of scenarios that include the impact
of wearing respiratory PPE, and different variants of SARS-CoV-2 (in-
cluding the highly contagious Delta variant). Conclusions are given in
Section 4, including discussion of application of this model to a variety
of scenarios.

The most significant contribution of this study is the development
of a theoretical framework in which engineering designs and biomed-
ical data can be incorporated to quantify epidemiological risks. To
the best of our knowledge, the presented model is the first of its
type and can be easily adapted for other airborne diseases. However,
due to the lack of clinical and virological data regarding COVID-19
and SARS-CoV-2, some assumptions are not firmly validated by ex-
perimental evidence, such as the linear relationship between the
HID50 and TCID50 indices, and ignoring natural virus decay in the
air. The model accuracy will increase when the relevant data become
available.

2. A spatiotemporal model of COVID-19 transmission risk

2.1. The conventional Wells-Riley model

According to the original model proposed by Wells (1955) and
Riley (Riley et al., 1978), the probability of infection via airborne
particles is given by a Poisson process, where the infection probabil-
ity P is dependent upon the total “infectious quanta” of pathogen in-
haled nquantum, which is given by the product of the number
concentration of quanta in the air cquantum, the susceptible person's
pulmonary ventilation volumetric flow rate p, and the exposure
time te as

P ¼ 1 − exp −nquantum
� � ¼ 1 − exp −cquantumpte

� �
(1)

Although not clearly defined by Wells and Riley, an infectious quantum
is defined by Eq. (1), and so an infectious quantum represents a fixed num-
ber of virus particles (virions) that depends upon the infection rate of a sin-
gle virion. Conventionally, the Wells-Riley model is used to determine
airborne infection risk in ventilated indoor spaces under the assumption
that the aerosol concentration (and hence cquantum) is constant throughout.
Consider a room with a ventilation rate Q. If the room contains I infected
people, and each of them breathes out infectious pathogens at a fixed rate
of q infectious quanta per person per unit time, then under equilibrium
and well-mixed conditions the quantum concentration in the room is
3

cquantum = Iq/Q, and the infection probability of a person located in this
room is

P ¼ 1− exp −
Iqpte
Q

� �
: (2)

This equation assumes that the infectious quanta are removed from
the room air only by the ventilation airflow. In fact, however, many fac-
tors such as the accelerated decay of pathogens in air, ultraviolet deac-
tivation, deposition of pathogen-laden particles, air purification, as
well as chemical and thermal conditions will affect the pathogen viabil-
ity and quantum concentration (Fisk et al., 2005). Over the past de-
cades, a number of sink terms have been added to Eq. (2) to account
for these factors (Sze To and Chao, 2010). Recently, Shen et al.
(2021) has added scaling factors to account for the filtration effect of
wearing personalised protective equipment (PPE) such as facial
masks to mitigate against transmission of COVID-19. When all the
above factors are considered, the updated Wells-Riley model takes
the form

P ¼ 1− exp − 1 − ηIð Þ 1 − ηSð Þ Iqpte
Qþ λdecayV þ λUVV þ λdepV þ :::

� �
, (3)

where V is the room volume and λdecay, λUV and λdep respectively repre-
sent the rate coefficients of quantum sinks due to natural pathogen
decay, ultraviolet deactivation, deposition, etc. ηI and ηs are the filtra-
tion efficiency of the masks worn by the infected and susceptible per-
sons, respectively.

One drawback of the zero-dimensional Wells-Riley model is the as-
sumption of well-mixed and equilibrium conditions, corresponding to
a homogeneous quantum concentration throughout the indoor airspace.
This assumption is rarely satisfied due to the highly heterogeneous na-
ture of indoor airflows and localised nature of infection sources such
as individual patients. Hence the distribution of quantum concentration
and infection risk typically exhibit strong spatial and temporal varia-
tions, which must be resolved to accurately quantify infection risk.
With the increasing popularity of computational fluid dynamics (CFD)
in modelling indoor air flow and contaminant transport in recent de-
cades, the Wells-Riley model has been extended to 3D using CFD-
generated aerosol concentration fields. Yan et al. (2017) developed a
3D predictive model to analyse airborne transmission risks in airliner
cabins based on the Wells-Riley framework coupled with Lagrangian
particle simulations. Srivastava et al. (2021) recently developed an
analogous 3D model for COVID-19 infection evaluation in office build-
ings using Eulerian CFD simulations. In these studies the average con-
centration of infectious quanta cquantum in (1) is replaced by the
spatiotemporal concentration cquantum(x,t), greatly improving the spatial
resolution of the Wells-Riley model.

Another major drawback of the Wells-Riley model is that the infec-
tious quantum has not been properly quantified. A properly quantified
infectious quantum is important because different diseases have differ-
ent transmissibility, therefore require different pathogen dose to initi-
ate an infection (Sze To and Chao, 2010). Moreover, the dose of
exposure also affects whether the outcome is subclinical, tissue damag-
ing or even lethal following the infection (Sehrawat and Rouse, 2021).
However, there currently is a severe lack of data regarding what repre-
sents an infectious quantum for a given disease or pathogen type. Al-
though this problem has been pointed out by Sze To and Chao (2010)
over a decade ago, there has been little progress in this field to date.
Existing studies typically use hypothetical infectious quantum values,
which severely limits the accuracy of risk predictions. This situation
calls for accurate virological and clinical data to facilitate accurate
quantification of the Wells-Riley model.

This paper will present a unified framework in which the infectious
quantum is quantified using clinical data of viral shedding by COVID-
19 patients and virological data of SARS-CoV-2 infecting human cells.
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The local quantum concentration cquantum (Eq. (1)) in the air is
characterised using temporospatial CFD simulations of aerosol trans-
port considering a range of influencing factors including the HVAC
scheme and wearing of PPE. This contributes to a fit-for-purpose predic-
tive model for temporospatial infection risk of different SARS-CoV-2
variants in indoor spaces, and thus overcomes the limitations identified
above.

2.2. Quantification of the infection risk of SARS-CoV-2

To properly quantify the infection risk of SARS-CoV-2 in the
Wells-Riley model, it is necessary to link the number of infectious
quanta nquantum to clinical data. Under the assumption that the num-
ber nquantum of infectious quanta inhaled scales linearly with the
number nvirion of virions inhaled, then these variables may be related
as

nquantum ¼ ξnvirion (4)

where the dimensionless coefficient ξ characterises transmissibility
of the virus, which quantifies the average number of virions that
need to be inhaled for infection to occur. From the Well-Riley
model (1), this coefficient can be expressed in terms of the median
human infectious dose HID50, which is defined as the dose of virus
needed to infect 50% of the population, hence

P ¼ 0:5 ¼ 1 − exp −ξHID50ð Þ (5)

and so ξ is related to HID50 as

ξ ¼ ln 2
HID50

(6)

Although HID50 data for SARS-CoV-2 is currently limited, transmis-
sibility data is available in terms of the median tissue culture infectious
dose TCID50, which is defined as the dose of virus needed to infect 50%
of the tissue cultures in laboratory (van Doremalen et al., 2020). A
smaller TCID50 value means less virions are needed to initiate an infec-
tion and hence a more contagious virus. For example, the TCID50 unit of
human immunodeficiency virus (HIV) is about 116,000 virions (Iwami
et al., 2012), while for influenza A virus the unit is 1000 to 6000 virions
with a mean value of 4000 (Parker et al., 2015; Yan et al., 2019a).
TCID50 data for SARS-CoV-2 has only recently been reported, with var-
iation over a very wide range (between 103 and 105 virions) depending
on the virus variant (Liotti et al., 2021; Pollock et al., 2021; Sender
et al., 2021). It is expected that as further studies are conducted that
these data shall become more robust, but similar to viral load, large var-
iations in transmissibility may persist between SARS-CoV-2 variants.
Under the assumption that there exists a linear relationship between
the in-vitro TCID50 index and the in-vivo HID50 index, Eq. (6) may be
expressed as

ξ ¼ ln 2
δTCID50

, (7)

where the coefficient δ represents the ratio of HID50 to TCID50 (δ =
HID50/TCID50). For influenza, the HID50 unit is reported to be 1 to
126 TCID50 units with the median value of δ = 5 (Nikitin et al.,
2014) and δ = 0.5 to 3 for those not immunised. For SARS-CoV-2, δ is
unknown but we currently assume it to be the same as that of the influ-
enza virus (δ = 5) in lieu of more detailed information.

In the initial stage of the COVID-19 pandemic, Wölfel et al. (2020)
continuously monitored the SARS-CoV-2 viral load in the sputum of
COVID-19 patients and found that viral shedding was very high during
the first week of symptoms, followed by a slowly descending viral load
in the following 3 weeks. Over a 28-day period, the mean viral load in
the patients' sputum was 7.0 × 106 ribonucleic acid (RNA) copies/mL,
4

with a maximum of 2.35 × 109 copies/mL. The number of virions has
been found (Sender et al., 2021) to be roughly equal to the number of
RNA copies. Assuming each genome is associated with a virion,
Stadnytskyi et al. (2020) calculated that the probability that a 50-μmhy-
drated droplet contains at least one infectious virion is ~37%. For a 10-
μm and 3.5-μm hydrated droplet, the probability drops to 0.37% and
0.01%, respectively. This suggests a linear relationship between the vi-
rion count in a respiratory droplet and the volume of the droplet, which
can be expressed as

np,virion ¼ cRNA
πd3p,0
6

, (8)

where np,virion is the number of virions contained in a droplet with an ini-
tial hydrated diameter of dp,0 and cRNA is the viral load of an infected
person's respiratory fluid (RNA copies per unit volume).

As a droplet evaporates and ultimately becomes a desiccated par-
ticle, it shrinks to a diameter of dp although the number of virions
contained in it does not change. Therefore, for air with a local parti-
cle volume fraction of c(x,t), the local number concentration of vi-
rions is

cN,virion x, tð Þ ¼ c x, tð Þd3p,0
d3p

cRNA, (9)

and so the local number concentration of infectious quanta is

cquantum x, tð Þ ¼ ξcN,virion x, tð Þ ¼ ξ
c x, tð Þd3p,0

d3p
cRNA, (10)

Substitution into Eq. (1) yields a spatiotemporal Wells-Riley model
for the local infection risk of SARS-CoV-2 based upon the local particle
concentration.

P x, tð Þ ¼ 1 − exp − 1 − ηSð Þ ln 2
δTCID50

c x, tð Þd3p,0
d3p

cRNApte

 !
, (11)

where the coefficient ηS (0 < ηS < 1) is the filtration efficiency of respi-
ratory PPE worn by susceptible persons. Conversely, respiratory PPE
worn by infected person reduces the load of expelled aerosols and so
is accounted for during the modelling of particle release and transport
using CFD, and ultimately impacts c(x, t). CFD can accurately simulate
physical aerosol transport and thus directly account for the quantum
sink terms in Eq. (3) associated with particle deposition and filtration
in a physically consistent manner. Similarly, if significant, impacts
such as particle decay and UV degradation can incorporated into the
CFD simulations via appropriate models.

However, changes in the viability of the suspended virions with the
aerosols are not considered in this study due to the very strong viability
of SARS-CoV-2 in the environment. van Doremalen et al. (2020) stud-
ied the viability of the virus in aerosols, and found that the virus re-
mained highly viable throughout the duration of their experiment
(3 h), with a reduction in the infectious titre from 103.5 to 102.7

TCID50 per litre of air, equivalent to a half-life of 1.1 to 1.2 h, compared
to the typical particle residence time of 5–15 min in a well-ventilated
room with an air exchange rate of 12 air changes per hour (ACH)
(Tang et al., 2021). Therefore, the rate of degradation is regarded as
very small and may be negligible under normal mandated air exchange
rates. In addition, due to the lack of clinical and virological data re-
garding COVID-19 and SARS-CoV-2, some assumptions are not firmly
validated by experimental evidence, such as the linear relationship be-
tween the HID50 and TCID50 indices, and ignoring natural virus decay
in the air. The model accuracy will increase when the relevant data be-
come available.

It is important also to note that the modified Wells-Riley model
(11) assumes that the infection risk only depends upon the total



0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

)
m(

Z

Line 1

Normalised particle concentration ( - )

Line 2

 Chen 2006
 TFM
 LM
 ASM

Line 3

Fig. 2. Comparison of two-phase flow models against experimental data.

Table 1
Compute time of CFD methods.

Time (min) TFM LM ASM

Model solution 300 360 180
Post-processing 0 300 0
Total 300 540 180
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viral load inhaled (given by the total volume of inhaled aerosols) and
does not depend upon the particle size distribution of inhaled aero-
sols. Several studies have shown (Inthavong et al., 2013) that the
size of inhaled aerosols governs the deposition of such aerosols in
lungs and upper airway, with smaller particles penetrating the lower
airway and alveoli, causing an elevated risk of infection. A particle
size-dependent transmission coefficient ξ is required to properly in-
corporate these effects into the Wells-Riley model, but such clinical
data is not yet available and so this issue is beyond the scope of this
study.

2.3. Spatiotemporal resolution of aerosol transport

Eq. (11) suggests a key to spatiotemporal resolution of COVID-19
infection risk is to properly characterise the concentration distribution
of virus-laden airborne particles. For engineering-level applications,
multiphase flow models based on the Reynolds-averaged Navier-
Stokes (RANS) equations are often used to predict the transport of
airborne particles. High fidelity methods such as Large Eddy Simula-
tion (LES) and Direct Numerical Simulation (DNS) are useful for scien-
tific studies but are typically too computationally expensive for
widespread application. RANS models solve conservation equations
and turbulence models for the air flow field. There exist two classes
of methods used to describe the transport of particles, termed Lagrang-
ian and Eulerian methods, which have characteristic advantages and
disadvantages.

The Lagrangian method addresses the disperse nature of the aero-
sol phase and tracks the movement of individual particles via Newton's
second law. The Lagrangian method determines the lift, drag, gravita-
tional and Basset forces on an ensemble of representative aerosol par-
ticles of a given initial size distribution (under the assumption of
negligible aerodynamic interactions between aerosols), and so re-
solves spatiotemporal evolution of the aerosol particle size distribu-
tion. The Lagrangian method can also account for various interphase
transport phenomena such as interfacial forces and droplet evapora-
tion. It is widely used in the studies of indoor particulate contaminants
(Yan et al., 2017) including the transmission of COVID-19 (Li et al.,
2021b; Liu et al., 2021). However, additional post-processing proce-
dures (such as smoothing kernels) must be implemented to convert
the discrete particle trajectories to a continuous particle concentration
field (Yan et al., 2017; Zhang and Chen, 2007) before the risk model
can be applied, and large particle numbers must be advected to pro-
vide sufficient resolution to avoid conversion errors (Evrard et al.,
2021).

In contrast, the Eulerian models treat the particulate phase as a con-
tinuous pseudo-fluid that interpenetrates the air, thus their transport
can be modelled using a set of coupled conservation equations, with
the particle concentration directly calculated. Depending on how the
conservation equations are solved for the particulate phase, the
Eulerian models have different variants, such as the two-fluid model,
algebraic slip model (ASM), multiple size group (MUSIG), and many
others. The two-fluid model solves two sets of conservation equations,
one for each phase, with interphase transport terms being included in
the conservation equations to account for the interphase transport pro-
cesses. The algebraic slip model treats the air-particle mixture as a
single-phase fluid, thus only solves one set of momentum conservation
equations for the mixture and a further scalar conservation equation for
the particulate phase volume fraction. Momentum transfer between
phases is encoded via an algebraic “slip velocity”within the particulate
phase volume fraction conservation equation. In comparison, the two-
fluid model can produce more physically robust predictions but is com-
putationally more expensive than the algebraic slip model. The two-
fluid and algebraic slip models are somewhat limited in that they can
only model a single representative particle size (encoded in the mo-
mentum transfer terms), and so cannot resolve evolution of the particle
size distribution. MUlti-SIze-Group (MUSIG) models (Li et al., 2010;
5

Yuan et al., 2016) overcome this restriction by using a series of momen-
tum equations for various particle size “bins” (with different momen-
tum exchange terms for each) to resolve the evolving particle size
distribution, but the resultant large equation system is computationally
expensive to solve. The governing equations and related closure equa-
tions of the above models have been extensively elaborated in the liter-
ature (Li et al., 2015; Mikko et al., 1996) and will not be repeated here.
In principle, the spatiotemporal Wells-Riley model (11) can be used
with any appropriate CFD method for a given application. However,
to provide some guidance as to method selection, we evaluate the La-
grangian (LM), two-fluid (TFM) and algebraic slip (ASM) models in
terms of accuracy and computational cost to simulate the transport of
micron-sized particles in a ventilated chamber against experimental
data measured via phase Doppler anemometry (PDA) (Chen et al.,
2006). Details regarding the model setup and numerical procedure
can be found in (Li et al., 2015), and only data comparison are shown
here for conciseness.

Fig. 2 compares the particle concentration distribution predicted from
CFD simulations against the experimental measurements. It shows that all
the three two-phase flow models achieve good agreement with an average
predictive error smaller than 5%. The computational time for each model
on a desktop computer with a 4-core CPU (3.3 GHz base speed) and
16 GB RAM is shown in Table 1. It shows that the algebraic slip model
(ASM) only needs 180 min to obtain the particle concentration field,
whereas the two fluid model (TFM) requires 300 min due to solution of
the two momentum phase equations. The Lagrangian model (LM) needs a
considerably longer compute time (540 min) due to the need to solve the
particle advection equations, and the subsequent post-processing to convert
the discrete particle locations into a continuous particle concentration
distribution.

Despite the clear advantages in computational overhead, it is still
worth reiterating that the algebraic slip model is relatively simplified,
while the two-fluid and Lagrangian models provide more physically
robust approaches to particle transport in the air by accounting for
phenomena such as lift, Magnus and Basset forces. In addition, these
models also allow for dynamic models of droplet evaporation. Fur-
thermore, the algebraic slip model and two-fluid model should only
be used when the aerosol plume can be validly represented by a single
particle size, i.e. when evolution of the particle size distribution is
negligible. Thus, it is important to select appropriate multiphase
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flow models and associated closures for the physical scenario at hand
and the simulation fidelity demanded by the application.

3. Application of COVID-19 infection risk model in a hospital ward

As a demonstration, the spatiotemporal Wells-Riley model (11) de-
veloped in Section 2 is applied to the case of airborne COVID-19 infec-
tion risk in a hospital ward. We consider the impact upon airborne
infection risk of COVID-19 variant, virus transmissivity, and whether re-
spiratory PPE is donned by patients and/or staff. Quantification of air-
borne infection risk using a realistic floor plan and HVAC settings will
provide important information to develop effective mitigation and pro-
tection strategies.

3.1. The hospital ward model

Shown in Fig. 3 is the hospital ward of consideration, which includes
4 patient rooms, a nursing station and a workroom. The total floor area
of the section is 162 m2 and the floor aera of each patient room is
13.6 m2. Human models (downloaded from https://grabcad.com/
mcramblet-1/models) are included in the ward model to account for
the metabolic heat generated by human bodies. The ward has a mixing
ventilation scheme where both the supply and exhaust vents are located
in the ceiling. To balance the pressure inside and outside the patient
rooms when the room doors are closed, bent pipes with inserted high-
efficiency particulate air (HEPA) filters are used to connect the rooms
and corridor. However, due to the flow resistance of the filters, a signif-
icant part of air leaks through the door gaps into the work area, and so
can be a major source of infection in the work area (Villafruela et al.,
2016).

To reduce the computational overhead of the model, two separate
computational domains were created, one for Patient Room 3 and the
other for the common ward area, rather than computing the whole
ward section, as shown in Fig. 4. It is assumed that the aerosol concen-
trations in the leaked air from each room are equal as they are all single-
bed rooms containing one infected person. This allows us to only simu-
late one patient room, and hence reduce the CPU time. The patient
Fig. 3. CAD model of the hospital ward (the ward includes 4
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room model will be used to analyse the transport characteristics of
aerosol particles so that the particle size can be properly characterised
and their transport characteristics can be actually predicted. The
room model will also generate important data to properly specify
boundary conditions of the work area model.

The computational domains shown in Fig. 4 were discretised
using an unstructured tetrahedral mesh with prism inflation layers
applied at all solid surfaces for improved modelling of near-wall
flows, heat transfer and aerosol deposition. Mesh independence is
achieved at 2.2 million and 10.8 million mesh elements for the pa-
tient room and work area models, respectively, as further increasing
the mesh count to 2.8 and 12.2 million elements respectively results
in <0.5% change in the predicted air velocity at randomly selected
locations.

The ventilation and heat load parameters of the ward, as well as the
respiration and aerosol emission data of the occupants (e.g., healthcare
worker and patients) are summarised in Table 2. The ventilation param-
eters are selected based on the ASHRAE Standard 55-2004 (ANSI,
2004). The total human metabolic heat is ~90 W/person, of which
around 40% (36 W) is dissipated through convection in a typical indoor
environment (de Dear et al., 1997). This study only considers the con-
vective component as other components (e.g., radiative, sweating,
etc.) are not expected to remarkably affect the airflow field and aerosol
transport. The average human pulmonary ventilation rate is 6 L/min
(Carroll, 2007), which corresponds to a total mass flux of exhaled aero-
sol particles by a patient is 2.0 × 10−10 kg/s, as calculated in
Section 3.2.

3.2. Aerosol transport modelling approach

As discussed in Section 1, the particle size strongly affects the trans-
port characteristics of aerosol particles, therefore proper characteriza-
tion of the particle size is critical to effective modelling. Previous
studies (Li et al., 2018) have demonstrated that isolated droplets as
large as 100 μm only need 5 s to become completely desiccated in typi-
cal indoor conditions (25 °C, 50% relative humidity), however this
evaporation time can be extended significantly in the presence of high
single-bed patient rooms, a nurse station and workroom).

https://grabcad.com/mcramblet-1/models
https://grabcad.com/mcramblet-1/models


Fig. 4. The computational domains for (a) patient room 3 and (b) the main ward
area (the orange arrows point to the gaps in the door leading to air leakage, all
other flow enters or leaves the room through the supply air (blue arrow) and
return air (red arrow)).
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humidity or for dense sprays where the surrounding vapor field signifi-
cantly retards evaporation (Chong et al., 2021; Villermaux et al., 2017).
Under the above fast-evaporation conditions, this evaporation time re-
duces to 0.1 s for droplets with initial size of 10 μm. As a result, over
80% of the respiratory droplets will be desiccated and thus become air-
borne droplet nuclei (<10 μm) within 1.0 s and more than 95% of the
droplets will shrink to be less than 30 μm in few seconds. In comparison,
the particle residence time in a well-ventilated hospital roomwith an air
exchange rate of 12 air changes per hour (ACH) is 5–15 min (Tang et al.,
2021), rending the droplet dehydration time negligible. Therefore, this
study neglects the process of droplet dehydration, and assumes that
droplets become desiccated particles immediately after being emitted.
As the density and load of non-volatile compounds in human sputum re-
spectively is 1400 kg/m3 and 1.8% (Nicas et al., 2005), the diameter dp
of a dehydrated droplet nucleus is estimated to be 26.2% of its original
diameter dp,0. As a result, more than 95% of the particles will be smaller
than 30 μm according to Fig. 1.
Table 2
Computational parameters of the hospital ward models.

Building Occupants

ACH Supply air
temperature

Convective
heat

Aerosol emission
rate

Pulmonary ventilation
rate

(−) (°C) (W/person) (kg/s/patient) (L/min/person)
12 21 36 2.0 × 10−10 6
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To understand the transport characteristics of different-sized parti-
cles, CFD simulations using the Lagrangian model are first performed
with the ejected particle size distribution given in Fig. 1 for human
speaking. The trajectories of particles with different sizes are shown
in Fig. 5. The results show that as the particles disperse, the tendency
to deposit increases with particle size, such that 1.6-μm particles follow
the air flow and remain airborne with minimal deposition (Fig. 5(a)),
but 11.8-μm particles are found to deposit on the floor and room walls
(Fig. 5(b)). Deposition becomes dominant for 22.9-μm and 29.5-μm
particles (Fig. 5(c) and (d)), where most of these sized particles settle
in a small area around the patient mouth, and some of the 22.9-μm par-
ticles settle on the floor. As a result, almost all particles larger than
20 μm settle in the room and cannot pass through the door gaps and
enter the work area. These results demonstrate it is typically safe to ig-
nore particles larger than 20 μm in terms of airborne disease transmis-
sion risk, and so these particles shall not be considered further in this
study.

According to Fig. 1, although particles larger than 20 μm com-
prise a large mass fraction (>80%) of the exhaled aerosol, they
only comprise a small number faction (<5%). The number and mass
fractions distribution of particles smaller than 20 μm are shown in
Fig. 6.

The algebraic slip model is selected to predict the aerosol transport
due to its good accuracy and relatively low computational cost. How-
ever, due to the inherent limit of the model, a representative particle
size rather than the particle size distribution as shown in Fig. 6 must
be used. Therefore, the size and mass distributions shown in Fig. 6 are
then used to calculate a representative volume-weighted mean particle
diameter (dp,mean). If the particle size range is binned into i size groups
and each group contains ji particles, the volume-weighted mean particle
diameter dp,mean then satisfies

d3p,mean∑
i
ji ¼ ∑

i
d3p,i ji
� �

, (12)

resulting in dp,mean = 6.62 μm. The volume-weighted mean particle di-
ameter dp,mean is incorporated in the algebraic model to predict the
transport of particles in the air. The predicted particle distribution and
deposition pattern are compared with those generated from the La-
grangian model using the particle size distribution shown in Fig. 6. As
shown in Fig. 7, both models predict a highly heterogeneous particle
concentration field in the room, with a local high concentration region
directly above the patient's head. The particles quickly disperse as the
distance from the patient increases. The ASM with the representative
particle mean diameter dp,mean predicts a very similar spatial aerosol dis-
tribution to that of the Lagrangian model. Similarly, the particle deposi-
tion patterns predicted from both models are also very similar, resulting
in a net particle deposition rate at the floor of 5.1 × 10−12 and
6.2 × 10−12 kg/s, for the algebraic slip model and Lagrangian model
respectively. Although these comparisons do not extensively test evolu-
tion of the particle size distribution, these results indicate the algebraic
slip model is sufficiently accurate for demonstration of the spatiotempo-
ral Wells-Riley model.

3.3. Effects of virus features on the infection risk

As discussed in Section 2, infection risk depends on a range of factors.
Understanding the importance of each factor is important to the develop-
ment of effective prevention and protection strategies. To quantify the ef-
fects of virus characteristics (e.g., the TCID50 unit and viral load) on the
infection risk, computations are performed under a variety of assumed sce-
narios. In the computations of Fig. 8, the susceptible personwears a surgical
mask with a filtration efficiency of ηS = 0.715 (Clapp et al., 2021), the in-
fected personwears nomask (ηI=0), and the particle emission rate is 1000
particles per second (Stadnytskyi et al., 2020), equivalent to a mass injec-
tion rate of 2.0 × 10−10 kg/s.
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travelling �me

dp = 1.6μm dp = 11.8μm 

dp = 22.9μm dp = 29.5μm 

Fig. 5. Trajectories of different sized aerosol particles computed from a single exhalation event under the Lagrangian model.
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We first investigate the sensitivity of infection risk to the number of
virions needed to initiate an infection, given in terms of the TCID50

value. Different viruses can have markedly different TCID50 values,
which is one of the most important factors determining the viruses'
transmissibility. For SARS-CoV-2, the TCID50 unit is reported to
range from 103 and 105 virions with an average value of 104 virions
(Liotti et al., 2021; Pollock et al., 2021; Sender et al., 2021). For the
original SARS-CoV-2 variants such as Alpha and Beta, the TCID50

unit is around 10,000 (Sender et al., 2021). The Delta variant possesses
mutated spike proteins that have a stronger ability to bind to human
cells (Ma et al., 2021). The study by Scudellari (2021) found that in
the Alpha variant of SARS-CoV-2, around 50% of spike proteins are
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Fig. 6. Number and mass fraction probability distributions of dehydrated aerosol
particles.
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primed to infect a human cell. This percentage rises to greater than
75% in the Delta variant, making it need fewer virions to start an infec-
tion (i.e., a smaller TCID50 unit) compared to non-Delta variants. As a
result, TCID50 unit of the Delta variant is around 4000 (Liotti et al.,
2021).

Infection risk in the patient room is quantified in terms of the 3D
distribution of infection probability given by (11) using an assumed
total exposure time of 1 h (te = 3600 s) and a viral load of CRNA =
2.35 × 109 copies/mL (the peak value of the original variants mea-
sured by Wölfel et al. (2020)). As shown in Fig. 8, the computations re-
veal that the infection risk has a strongly heterogeneous distribution
similar to that of the particle concentration field (Fig. 7(b)). As ex-
pected, the region above the infected person represents the highest in-
fection risk. The infection risk is relatively low when the TCID50 unit is
large (1 × 105 virions) even the infected person does not wear a mask
and the susceptible person only wears a surgical mask with a filtration
efficiency of 0.715. The area-averaged mean infection probability in
the horizontal plane at the typical nose height of the susceptible person
(H = 1.65 m) is as low as 0.028. As the TCID50 unit decreases and the
viruses become more contagious, the infection risk quickly increases.
When the TCID50 unit drops to 1 × 103, the mean infection probability
at the nose height becomes more than 16 times higher than that of
TCID50 = 1 × 105.

Apart from the TCID50 unit, the viral load cRNA is another criti-
cal parameter determining the transmissibility. The viral load re-
ported in the literature is distributed in a very wide range (102 to
1011 RNA copies/mL (Miller et al., 2021)) and can vary with differ-
ent virus variants. Li et al. (2021a) reported that the viral load pro-
duced by the Delta variant is over 1000 times higher than the
original 19A/19B strain, and this variation is one of the main
causes of the Delta variant's high transmissibility. To investigate



(a) Lagrangian (dp = 0.8 – 16.4μm) (b) ASM (dp,mean = 6.6μm) 

(c) Lagrangian (dp = 0.8 – 16.4μm) (d) ASM (dp,mean = 6.6μm) 

Fig. 7. Comparison of (a), (b) particles in the air and (c), (d) particle deposition pattern for the Lagrangian and algebraic slip models respectively. Note that (a) shows the
particle traveling time and (b) shows the particle concentration field. (c) and (d) show the particle deposition rate. The figure shows a properly selected representative
particle size is able to achieve a satisfactory prediction.
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the effects of viral load on the infection risk, computations are
performed over the range of 6 × 105 to 1 × 1011 copies/mL. The
lower limit of viral load (6 × 105 copies/mL) represents the mini-
mum viral load to trigger an infection in vitro (Li et al., 2021a) and
the upper limit (1 × 1011 copies/mL) is the maximum value
reported in the literature (Miller et al., 2021). Fig. 9 shows the in-
fection risk pattern in the room under different viral loads. The in-
fection probability is very low at low viral loads (Fig. 9(a) and (b)),
but gradually increases as the viral load becomes larger and begin
to display heterogeneous distribution patterns (Fig. 9(c)). At very
high viral load (1 × 1011 RNA copies/mL), a significant part of
the room becomes a “red zone” (Fig. 9(d)) with a mean infection
probability of 0.767 for a one-hour exposure.

To comprehensively analyse the relative significance of the
TCID50 unit and viral load, parametric studies are performed. The
computations are completed with an exposure time of 1.0 h (te =
3600 s) and the susceptible person wears a surgical mask (ηS =
0.715 (Clapp et al., 2021)). The predicted mean infection risk at the
nose height is shown in Fig. 10, which indicates that the infection
risk is very low at small viral loads (cRNA < 107 copies/mL), but in-
creases nonlinearly as the viral load becomes larger. This results in
an apparent “threshold viral load”, beyond which the infection risk
rapidly increases, and this threshold viral load increases with
TCID50 value.

The parametric studies show either a large viral load or small TCID50

unit can lead to a high infection risk. Highly contagious variants of SARS-
9

CoV-2 such as Delta are typically characterised by high viral loads and
small TCID50 values, rending themmuchmore contagious than the original
variants.

Using a TCID50 unit of 4000 virions for the Delta variant (Liotti
et al., 2021) and 10,000 virions for the original variants (Sender
et al., 2021), the corresponding infection risks of the variants are esti-
mated and plotted in Fig. 10. With the same aerosol concentration, the
infection risk of the Delta variant is significantly higher than the orig-
inal variants. Moreover, given that the viral load produced by the
Delta strain is 3 orders of magnitude larger than the original SARS-
CoV-2 variants (Li et al., 2021a), the mean and maximum viral load
produced by the Delta variant is estimated to be 8.82 × 109 and
2.96 × 1012 copies/mL respectively based on the study of Wölfel
et al. (2020). Consequently, the average infection probability of the
Delta variant is estimated to be more than 200 times greater than the
original variants, as illustrated by the red dots in Fig. 10. If we consider
the maximum viral load, the transmissibility of the Delta variant is even
more striking. Newly emerged variants such as the C.1.2 (Scheepers
et al., 2021) and the B.1.1529 strains are reported to have highly mu-
tated spike proteins, which could lead to dramatically increased infec-
tion risk.

If the susceptible person wears a surgical mask (ηs = 0.715), this
can provide good protection from the original SARS-CoV-2 variants,
but the protection is limited in the case of the Delta variant, which
means that more effective protection strategies need to be developed
urgently.



 (a) TCID50 = 1×105  

(mean risk at the nose height = 0.028) 

(b) TCID50 = 1×104

(mean risk at the nose height = 0.151) 

DICT)c( 50 = 1×103

(mean risk at the nose height = 0.459)  

Fig. 8. Effects of the TCID50 on the infection risk (ηI=0, ηS=0.715, cRNA=2.35×109 copies/mL,HID50=5×TCID50, te=3600 s. Nose height taken as H=1.65m). The
results show when other conditions remain unchanged, the infection risk quickly increases as the TCID50 unit decreases.
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3.4. Effects of personal protection equipment (PPE) on the infection risk

The use of respiratory personal protective equipment (PPE) by both the
infected and susceptible persons is also investigated. Computations were
completed with the infected person wearing either no mask (ηI = 0) or a
mask with a filtration efficiency of 0.9 (ηI =0.9). This means the net parti-
cle injection rate from each infected person into the air reduces from
2.0 × 10−10 kg/s to 2.0 × 10−11 kg/s. Surgical masks and NIOSH-
approved N95 respirators are selected for the susceptible person, with re-
spective filtration efficiencies of ηs = 0.715 and ηs = 0.98 (Clapp et al.,
2021). Other computational parameters are selected for the Delta variant
(cRNA = 8.82 × 109 copies/mL, TCID50 = 4000), an exposure time of
te = 3600 s is used, and the predicted infection risk distribution is shown
in Fig. 11.

As expected, the results indicate that wearing of facial masks by
the infected and/or susceptible persons markedly reduces the infec-
tion risk. As shown in Fig. 11(a), when the infected person is not wear-
ing a mask and the susceptible person only wears a surgical mask, the
room has a local infection risk approaching 1.0 over a one-hour expo-
sure. The mean infection probability at the nose height is 0.415. How-
ever, if the susceptible person wears a N95 respirator, the risk drops
significantly to 0.118 (Fig. 11(b)). It is also important for the infected
person to wear a facial mask in order to reduce aerosol emission and
hence source of infection. When 90% of the emitted particles are cap-
tured by the mask, the mean infection probability drops from 0.415
(Fig. 11(a)) to 0.152 even if the susceptible person only wears an
10
ordinary surgical mask (Fig. 11(c)). The mean risk further drops to
0.017 if the susceptible person wears a properly fitted N95 respirator
(Fig. 11(d)). The results clearly demonstrate the efficacy of respira-
tory PPE for both patients and healthcare workers in healthcare
environments.

Parametric studies are also conducted to analyse the effectiveness
of respiratory PPE over a broad parametric range, as shown in
Fig. 12. Fig. 12(a)–(c) presents the results of cases where the infected
person is not wearing a mask and in Fig. 12(d)–(f), the infected person
wears a mask with a filtration efficiency of 0.9. In each column of the
figures, the viral load increases from 1 × 107 copies/mL in the top to
1 × 1011 copies/mL in the bottom. The results clearly show that wear-
ing a mask or respirator by the infected and/or susceptible persons can
contribute to lower infection risks, and the benefits increase with mask
filtration efficiency.

However, the efficacy of respiratory PPE can dramatically change
under different viral load and TCID50 conditions. For example, when
the viral load is low (cRNA = 107 copies/mL), wearing a N95 mask
(ηS = 0.98) by the susceptible person can keep the infection risk at
very low levels (<0.001) even if the infected person wears no mask
and the virus is highly contagious (TCID50 = 103), as shown in Fig. 12
(a). If the infected person can also wear a mask, it is safe for the suscep-
tible person to only wear a surgical mask Fig. 12(d). However, with in-
creasing viral load in the particles, the effectiveness of respiratory PPE
quickly decreases. If we take the infection probability of 0.001 as the ac-
ceptable upper limit (illustrated by the blue dash-dot lines in the figure),



 (a) cRNA = 6×105 copies/mL 

(mean risk at the nose height < 0.001) 

(b) cRNA = 1×107 copies/mL 

(mean risk at the nose height = 0.008) 

 (c) cRNA = 1×109 copies/mL 

(mean risk at the nose height = 0.088) 

(d) cRNA = 1×1011 copies/mL 

(mean risk at the nose height = 0.767) 

Fig. 9. Effects of the viral load on the infection risk (ηI = 0, ηS = 0.715, TCID50 = 104 virions, te = 3600 s). The results show that viral load is another important variable
affecting the transmissibility of the virus.
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surgical masks can only provide effective protection under very low
aerosol concentration and viral load conditions (Fig. 12(d)). As the
viral load exceeds 109 copies/mL, the efficacy of surgical masks is
very limited (Fig. 12(b) and (e)). If the viral load further increases,
N95 respirators will lose their high level of protection too, as shown in
Fig. 12(c) and (f).

The computations clearly demonstrate the benefits for both the
infected and susceptible person to properly wear respiratory PPE. How-
ever, respiratory PPE is effective only when the viral load is low and
TCID50 is large. At high viral loads and small TCID50 units, respiratory
PPE can only provide very limited protection. In fact, PPE locates at
the bottom of the NIOSH's hierarchy of hazard controls (NIOSH,
2015), meaning it is the least effective method for hazard control. As
highly contagious variants such as the Delta (Scudellari, 2021) and
Lambda (Kimura et al., 2021) variants are increasingly causing concerns
all over the world, more effective protection strategies must be
developed.

3.5. Infection risk in the common ward area

In this subsection we determine the infection risk in common ward
area arising from infectious patients in the ward rooms. To achieve
this, the predicted air and aerosol mass flow rates at the door gap of
the patient room are extracted and applied as boundary conditions for



 (a) ηI = 0, ηS = 0.715 

mean risk at breath plane = 0.451 

(b) ηI = 0, ηS = 0.98 

Mean risk at breath plane = 0.118 

 (c) ηI = 0.9, ηS = 0.715 

mean risk at the breath plane = 0.152 

(d) ηI = 0.9, ηS = 0.98 

mean risk at the breath plane = 0.017 

Fig. 11. Effects of PPE on infection risk (cRNA=8.82×109 copies/mL, TCID50=4000 virions, te=3600 s). The results clearly demonstrate the benefits for both the infected
and susceptible persons to wearing a mask.
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the CFD model of the common ward area. CFD computations are com-
pleted with the exposure time ranging from 10 min to 8 h, representing
the shortest and longest possible time that a staff member may stay in
the work area. Other computational parameters include transmissivity
for theDelta variant of TCID50=4000 and cRNA=8.82×109 copies/mL
(Li et al., 2021a). All the susceptible persons are wearing a N95 respira-
tor (ηS = 0.98).

The air flow field in the horizontal plane at the nose height (H =
1.65 m) and 3D particle concentration field in the work area are
shown in Fig. 13. The computations predict an evenly distributed air
flow field with an average air speed of 0.11 m/s. Local high-speed re-
gions can be seen near the door gaps and ventilation diffusers (Fig. 13
(a)). It also can be seen that the aerosol that escapes from the patient
rooms is carried by the ventilation air flow, creating a heterogeneous
particle concentration field. Relatively high-concentration regions are
observed in the corridor close to Patient Rooms 1 and 2 (Fig. 13(b))
where two room doors are close to each other, and fresh air is not di-
rectly supplied to. Compared to that in the patient rooms (Fig. 7),
the aerosol concentration in the work area is around 2 orders of mag-
nitude lower. The spatial distribution of airborne infection risk over
an 8-hour duration in the common ward area is shown in Fig. 13(c).
Similar to the aerosol concentration field, the spatial infection risk
distribution is highly heterogeneous throughout the common ward
area.
12
The mean infection risk in the horizontal plane at the breathing
height (H = 1.65 m) in the common ward area is calculated using dif-
ferent values of exposure time te and viral load cRNA, as shown in
Fig. 14. As expected, the infection risk increases with the exposure
time as per the exponential decay in (11). For SARS-CoV-2 variants
with low viral loads such as the original variants with a mean viral
load of cRNA = 7 × 106 copies/mL, the infection risk over an 8-hour
duration in the work area is negligible if high-efficiency respiratory
PPE (e.g., N95 respirators) is properly worn by the susceptible per-
sons. However, for variants with high viral loads such as the Delta var-
iant, the mean 8-hour infection risk dramatically increases to 0.02 even
if 90% of the aerosol particles exhaled by the infected persons in the pa-
tient rooms are filtered out (ηI = 0.9) using facial masks. If the infected
persons are not wearing masks, the mean infection risk can be as high as
0.177.

The computations show that although the infection risk in the work
area is significantly lower than that in the patient rooms, it is still high
for an 8-hour exposure if the virus has a small TCID50 unit or can pro-
duce a high viral load, as is the case for the Delta variant (Li et al.,
2021a). In these circumstances, conventional respiratory PPE such as
surgical masks and N95 respirators are not able to provide effective
protection. Although Figs. 12 and 14 clearly demonstrate that reducing
aerosol emission and/or inhalation via respiratory PPE is an effective
approach to lowered infection risk, further improvement of the
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Fig. 12. Effects of respiratory PPE (HID50= 5×TCID50= 20,000 virions, te=3600 s). The results suggest that respiratory PPE can provide good protection when the viral
load is low. However, additional protections are needed if the viral load is high.
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filtration efficiency of masks mat not be possible. From Eq. (7), the
ratio (δ) of HID50 to TCID50 is correlated to the level of immunisation.
An elevated vaccination level increases δ and hence reduces infection
probability. This is important for the development of efficient strate-
gies to fight the COVID-19 pandemic (Priesemann et al., 2021). In ad-
dition, engineering controls such as optimal ventilation design can
significantly reduce exposure to airborne pathogens in indoor environ-
ments. However, many contemporary buildings including healthcare
facilities adopt a mixing ventilation scheme, which enhances the
mixing of air and so promotes spread of COVID-19 in the indoor envi-
ronment. This issue has been identified by many investigators
(Lepore et al., 2021; Li et al., 2021b; Sodiq et al., 2021) and in public
media. Melikov (2020) suggests that to fight COVID-19, we need a par-
adigm shift in ventilation design. This issue of ventilation optimisation
shall be topic of future research, and the spatiotemporal Wells-Riley
model developed herein is well suited to the development of such mit-
igation strategies.

4. Conclusions

A novel spatiotemporal Wills-Riley model for airborne disease trans-
mission risk is developed based on the clinical data of viral shedding by
COVID-19 patients and biomedical data of SARS-CoV-2 virions infecting
human cells. This model utilises multiphase computational fluid dynam-
ics (CFD) modelling of aerosol transport, forming an integrated predic-
tive framework for spatiotemporal resolution of SARS-CoV-2 infection
risks in ventilated indoor environment. This general framework can re-
solve the impact of many factors upon airborne SARS-CoV-2 transmis-
sion risk including SARS-CoV-2 variant and illness time of infected
persons, level and type of vaccination of susceptible persons, level and
type of PPE worn by infected and/or susceptible persons, location and
movement of infected and/or susceptible persons in indoor environ-
ment, and natural and mechanised ventilation. The predictive model is
13
applied to a hospital ward accommodating COVID-19 patients and com-
putations are performed under a range of assumed scenarios. Conclu-
sions rising from this study are as follows:

(1) The newpredictivemodel provides a comprehensivemethod to predict
the infection risk associated with the exposure to airborne pathogens
including SARS-CoV-2. The characteristics of different SARS-CoC-2
variants, immunisation level of and donning of respiratory PPE by the
occupants, as well as the ventilation setup can be holistically consid-
ered in a single model. The model provides a comprehensive theoreti-
cal framework, for the first time, to integrate clinical data, biomedical
data and engineering designs in a single predictive model, and has en-
abled quantitative, spatial-temporal analysis of COVID-19 transmission
in indoor environment.

(2) This study highlights the significance of wearing respiratory PPE by
both the infected and susceptible persons. Respiratory PPE can provide
very good protection when the viral load is low and the variant is not
very contagious. However, with an increasing viral load and/or smaller
TCID50 unit, the efficacy of respiratory PPE quickly decreases. For
highly contagious variants such as the Delta variant, respiratory PPE
can only provide very limited protection in healthcare settings. As
highly contagious variants of SARS-CoV-2 are increasingly causing
concerns all over the world, a paradigm shift in ventilation and
improved level of vaccination is needed to reduce the risk in high-
risk environments.
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